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Abstract The Patterned Interface Reconstruction algorithm
reduces the discontinuity between material interfaces
in neighboring computational elements. This smoothing
improves the accuracy of the reconstruction for smooth bod-
ies. The method can be used in two- and three-dimensional
Cartesian and unstructured meshes. Planar interfaces will be
returned for planar volume fraction distributions. The algo-
rithm is second-order accurate for smooth volume fraction
distributions.

1 Background

In Eulerian and Arbitrary Lagrange-Eulerian simulation
codes, elements flux material to neighboring elements. For
volume-of-fluid simulation codes, the volume fraction of
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each material in each element is used to reconstruct the inter-
faces that separate materials. The reconstructed interface is
not retained between computational time steps. The volume
fraction is stored and evolved to reflect the material motion
through the mesh. By accurately reconstructing the material
interfaces, the material fluxes will more accurately reflect the
true spatial evolution of the materials. Less accurate recon-
struction methods produce a distortion of the materials.

The algorithms that are used to move multiple materials
through a computational mesh are numerous and diverse.
This paper will only recount the history of interface recon-
struction that led to the development of this method.

An early interface reconstruction algorithm was deve-
loped by Noh [4] called the Single Line Interface Construc-
tion (SLIC) method. While it kept a well defined boundary
between adjacent materials, it led to large distortions in the
overall shape of the materials. For instance, circular bodies
that were moved through the mesh in pure translation didn’t
remain circular. The SLIC method represented the material
interfaces as either vertical or horizontal line segments. This
lack of varying slope produced the inherent distortion.

The next advance in the current line of interface recon-
struction was Youngs’ algorithm [9]. The two-dimensional
algorithm exactly reproduced a linear material interface;
however, its extension to three spatial dimensions was not
exact for all linear interface orientations. Youngs’ 3D method
used a local gradient of the volume fractions to approximate
the normal to the piecewise linear representation. Each recon-
structed interface was positioned in the mixed element (an
element containing more than a single material) such that
it enclosed the volume of the material. All the methods dis-
cussed in this paper construct piecewise linear interfaces that
enclose the material volume. The difference between each
algorithm is in the method and accuracy of the interface nor-
mal approximation.
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366 S. Mosso et al.

While the order of accuracy for Youngs’ method is higher
than the SLIC method, it isn’t second-order accurate for all
interface orientations. Youngs’ original method could only be
used for orthogonal, tensor product grids. There have been
a number of extensions of the method to non-orthogonal,
unstructured grids.

A two-dimensional smoothing method was developed by
Mosso et al. [2]. The method employed stability points to
refine the results of a Youngs’ like reconstruction to exactly
reproduce a linear interface in orthogonal and non-orthogonal
meshes. The current work reported here has extended this
simple smoothing algorithm into a second-order method in
two and three spatial dimensions on orthogonal and non-
orthogonal meshes.

2 Algorithm overview

2.1 Initial interface orientation

The Patterned Interface Reconstruction (PIR) algorithm starts
with the description of a mesh. The mesh is described by
the spatial coordinates of nodes, the volume fractions of the
material(s) in each element, and the arrangement of the nodes
that describe the boundary of each element. This method
assumes that the edges of elements are linear and the facets
of elements in three dimensions are either planar or have been
tesselated into planar triangles. To reduce iteration expense
the mesh is reduced into a list of mixed elements and a list of
all single material elements that share a node with a mixed
element. The neighboring single material elements are used
in the gradient computation.

The first step in computing the interface between a mater-
ial and all other materials is to perform a Youngs’ like recon-
struction. The interface normal is approximated by the gra-
dient of the volume fraction of the material in each mixed
element containing the material. The “home” element is com-
puted using a Dukowicz [1] surface integral formulation,
where

n̂ � −∇ f

|∇ f | =
− ∮

f ŝd S
∣
∣
∮

f ŝd S
∣
∣ . (1)

Here n̂ is the unit normal of the material interface, f is the
volume fraction of the material in each neighboring element,
the unit vector ŝ is the outwardly directed control volume
unit normal, and d S is the surface differential of the con-
trol volume. The first step in evaluating the surface integral
is to produce a node averaged volume fraction based upon
a volume weighted average of the volume fractions in the
elements surrounding the node. An illustration of the nodal
volume fraction averaging of the element volume fractions
surrounding the nodes is given in Fig. 1. The element of inter-
est is the red sided element. Its nodes are shown as green

Fig. 1 Illustration of volume fraction gradient computation. The algo-
rithm will calculate the gradient in the element with red edges. The
volume fractions will be averaged for each green vertex using the blue
control volumes. The redcircles are the element centroids. The sur-
face integral gradient will then be computed over the rededges of the
element surface

circles. The control volume of each node is bounded by the
blue segments. The element centroids are shown as red cir-
cles. Each nodal control volume edge extends from an edge
midpoint to the element centroid. After the average nodal
volume fractions are computed, the surface integral is then
evaluated over the surface of each mixed element. The red
segments are the edges that form the surface integral bound-
ary. Using a linear average of the nodal values over each
side and the outwardly directed edge unit normal, ŝ, each
edge integral is computed and summed. n̂ will be computed
approximately correctly because the averaged volume frac-
tion field approximately generates a differentiable level set
representation.

Using the gradient normal as the initial interface normal,
an algorithm similar to Yang and James [8] and Scardovelli
and Zaleski [5] is used to efficiently iterate for the position
of the interface within the element. This ensures that the
interface bounds the correct material volume. An efficient
positioning algorithm is critical to the efficiency of the PIR
method. The PIR method invokes the positioning algorithm
about twenty times per material per mixed element.

It was claimed in the first section of this paper that the gra-
dient normal was an approximation to the interface normal.
The smoothing algorithm will use the initial gradient normal
interfaces to increase the accuracy of the results.

2.2 Linear smoothing

Consider a linear interface passing through the mesh neigh-
borhood in Fig. 2. The exact linear input interface is shown

123



A smoothed two- and three-dimensional interface reconstruction method 367

Fig. 2 Illustration of stability points for a linear interface

as a blue, dashed line and the reconstructed interfaces based
upon the gradient normal are shown as red segments. The
inaccuracy of the gradient normal is large enough to be visi-
ble and the interfaces are discontinous at the element bound-
aries. In reference [2], the use of Swartz stability points was
presented and discussed further in [6]. The stability points
are the centroids of the reconstructed interfaces. They are
shown as circles in Fig. 2. It can be observed that the end-
points of the reconstructed interfaces are farthest from the
exact interface while the stability points consistently lie near
the exact interface. When the orientation of the reconstructed
interfaces is varied slightly, the motion of the stability points
is predominantly tangential to the interface. The motion of a
stability point as the interface normal is varied is shown in
Fig. 3. The interface normal is varied and the stability point
is recomputed and plotted. The tangential motion makes the
stability point a good approximation for the position of the
interface if the normal were more accurately chosen. In refer-
ence [2] the linear smoothing algorithm used only two of the
neighboring stability points to improve the interface normal.
By using just two neighbors the algorithm contained some
arbitrariness and the accuracy of the smoothing depended
upon the correct selection of which neighbors to use. For
a linear interface this choice was not critical; however, for
curved interfaces the use of a reduced neighborhood could
impact the accuracy of the algorithm if the chosen neighbors
were more distant from the home element than other neigh-
bors. In the current work the locations of the stability points

Fig. 3 Illustration of stability point motion as the interface normal is
varied at constant volume fraction

in the “home” element and the neighboring elements are used
in a linear, least squares fit of a plane (which is a line in two-
dimensions) that can be used to improve the interface normal
in the home element. The fitted interface is required to pass
through the home element’s stability point and the sum of
the squares of the orthogonal distance between each neigh-
boring stability point and the fit is minimized. To simplify
the algebra involved, we translate the origin of the coordinate
system to the home element’s stability point via

S′
i = Si −H,

where H is the home element’s stability point position, Si

is the physical position of a neighboring stability point, and
S′

i is the translated position. The points X on a plane are
described by the equation:

n̂ · X− p = 0,

where n̂ is the unit normal to the line and p is the line’s
orthogonal distance to the origin. Due to the translation of
the coordinate system p will always be zero. The ortho-
gonal distance, di , of each neighboring stability point from
the smoothing line is:

di = n̂ · S′
i.

The objective function to be minimized is

Obj =
ngbrs∑

i=1

Wi (n̂ · S′
i)

2

where the summation is performed over the ngbrs neighbor-
ing, mixed elements. The smoothing algorithm seeks the unit
normal, n̂ that produces the smallest objective function. Var-
ious weighting schemes were considered for Wi . The most
promising weighting involved giving elements with a volume
fraction of half a weight of one. Other volume fractions lin-
early decrease from the weighting of one at a volume fraction
of half to a weighting of zero for volume fractions of zero and
one. The weighting doesn’t significantly change the results
of the smoothing procedure; thus, Wi = 1 is now used.
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368 S. Mosso et al.

2.2.1 Linear smoothing in two-dimensions

The unit normal in two-dimensions can be expressed as the
trigonometric functions of the angle φ:

n̂ = cos φ î+ sin φĵ.

By using trigonometric functions the normal is guaranteed to
be a unit normal. The signed, normal distance, di of a neigh-
boring stability point {S′xi

, S′yi
} from the interface description

is:

S′xi
cos φ + S′yi

sin φ = di .

The optimization function for the fitting procedure becomes:

Obj =
ngbrs∑

i=1

(S′xi
cos φ + S′yi

sin φ)2. (2)

At the minimum and maximum objective function values
∂Obj
∂φ
= 0. There will be four values of φ that satisfy the

relation. Two of the values will be minima and two will be
maxima. The two minima will be π radians apart because the
two angles define the same orientation of the line in space and
are the negation of each other. The two maxima will also lie
π radians apart and will lie π/2 radians from the minima. To
determine an expression for the values of φ at the extremes,
we carry out the differentiation of the objective function with
respect to φ and set the expression to zero:

∂Obj

∂φ
= ∂

∂φ

⎛

⎝
ngbrs∑

i=1

(S′xi
cos φ + S′yi

sin φ)2

⎞

⎠

= 2
ngbrs∑

i=1

(S′xi
cos φ+S′yi

sin φ)(S′yi
cos φ−S′xi

sin φ)

= 2(cos2 φ − sin2 φ)

ngbrs∑

i=1

S′xi
S′yi

+ 2(cos φ sin φ)

ngbrs∑

i=1

((S′yi
)2 − (S′xi

)2).

Solving the following equation for φ:

(cos2 φ − sin2 φ)

ngbrs∑

i=1

S′xi
S′yi

+ (cos φ sin φ)

ngbrs∑

i=1

((S′yi
)2 − (S′xi

)2) = 0

gives us

φ = ± arccos

⎛

⎝±
√

4S2
xy + D

(
D ±√t

)

2t

⎞

⎠ ,

where:

Sxx =
ngbrs∑

i=1

(S′xi
)2, (3)

Syy =
ngbrs∑

i=1

(S′yi
)2,

Sxy =
ngbrs∑

i=1

S′xi
S′yi

,

D = Sxx − Syy,

t = 4S2
xy + D2.

This allows us to compute a value for φ; however, the
result isn’t as useful as might be thought. The output of the
algorithm is a description of the line that best fits the input
data. The answer will not be returned as an angle; rather, the
answer will be returned as the values of the cos φ and sin φ.
Execution expense can be saved by eliminating the call to
the arc cosine function in the computation of the angle. It is
more efficient to determine the cos φ and use the result to
evaluate the sin φ:

cos φ = ±
√

4S2
xy + (Sxx − Syy)

(
Sxx − Syy ±√t

)

2t
,

sin φ = ±
√

1− cos2 φ.

There are four sets of values for cos φ and sin φ. The
expense in calculating extra values can be reduced. The ±1
coefficient for the square root used in calculating cos φ can
be eliminated by recognizing that:

cos φ = − cos(φ + π).

This means that through the use of the ±1 coefficient, we
will be producing the mirror image of the same line. The
second set of two roots, ±√t , will produce the cos φ for the
minimum and maximum objective function. Both of these
possible roots will be evaluated.

In the expression for the sin φ in terms of cos φ, there is
also a±1 coefficient. These two possible roots are also non-
trivial and should both be evaluated. This gives us four sets
of possible roots. All four sets should be evaluated and the
objective function for each result should also be evaluated.
Only by comparing the four values of the objective function
can we determine which of the four unit normals is the correct
solution.

In summary, given the set of stability points, we evaluate
four possible unit normals:
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A smoothed two- and three-dimensional interface reconstruction method 369

cos φa =
√

4S2
xy + D

(
D +√t

)

2t
, (4)

cos φb =
√

4S2
xy + D

(
D −√t

)

2t
,

n̂1 = {cos φa,
√

1− cos2 φa},
n̂2 = {cos φa,−

√
1− cos2 φa},

n̂3 = {cos φb,
√

1− cos2 φb},
n̂4 = {cos φb,−

√
1− cos2 φb}.

The magnitude of the computed objective function for each of
the possibilities, is used to determine which normal produces
the best fit:

n̂L S = {n̂|min
(
Obj (n̂1), Obj (n̂2), Obj (n̂3), Obj (n̂4)

)}.
In conclusion, given a value of the unit normal that pro-

duces the minimum objective function, we need to determine
if the negation of the normal should be returned. The original
gradient normal that is used to produce the modified Youngs’
interface, n̂grad will be used to orient the least-squares nor-
mal, n̂L S :

if (n̂grad · n̂L S < 0) n̂L S = −n̂L S .

2.2.2 Linear smoothing in three-dimensions

In the previous section, a least-squares interface smoothing
algorithm was developed. For three spatial dimensions, the
development will proceed in a similar fashion. The stability
points will be translated in space so that the home element’s
stability point lies at the origin.

We start by defining a plane in space that runs through the
home element’s stability point:

n̂ · X = 0.

The normal n̂ can be expressed using the trigonometric func-
tions of the angles, φ and θ :

n̂ = (sin θ cos φ)î+ (sin θ sin φ)ĵ+ (cos θ)k̂.

The angle φ is the angle that the projection of the plane’s
normal into the x-y plane forms with the x-axis. The angle θ

is the angle between the plane’s normal and the z-axis.
To perform the smoothing operation, there will need to

be at least two neighboring stability points in addition to the
home element’s stability point. In practice, there are usually
more than two.

The signed, normal distance, di of a point {xi , yi , zi } from
the plane is:

xi sin θ cos φ + yi sin θ sin φ + zi cos θ.

The sum of the squares of the stability points’ distances
from the fitted plane is used as the optimization function for

the least-squares algorithm:

Obj =
ngbrs∑

i=1

(xi sin θ cos φ + yi sin θ sin φ + zi cos θ)2.

A sample plot of the objective function for a set of three
points is shown in Fig. 4. Two peaks in the objective function
occur when the plane is orthogonal to the angles that produce
the minima. The minima occur at the values of the plot corres-
ponding to directions along the plus and minus z-directions.
It appears as if the value of the objective function is constant
for all values of φ when θ is 0 and π . This is incorrect because
the direction of the unit normal is independent of φ when the
value of θ is 0 or π . This simply means that the normal is
pointing along the plus and minus z-axis.

The same data may more easily be viewed by looking at
the same function as a contour plot. This is shown in Fig. 5.

At the minimum and maximum objective function values
∂Obj
∂θ
= 0 and ∂Obj

∂φ
= 0. These expressions are, using similar

symbols for the summation terms:

Sxy cos2(φ) sin2(θ)− Sxy sin2(φ) sin2(θ)

− Sxx cos(φ) sin(φ) sin2(θ)+ Syy cos(φ) sin(φ) sin2(θ)

+ Syz cos(φ) cos(θ) sin(θ)− Sxz cos(θ) sin(φ) sin(θ) = 0,

Sxx cos(θ) sin(θ) cos2(φ)+ Sxz cos2(θ) cos(φ)

− Sxz sin2(θ) cos(φ)+ 2Sxy cos(θ) sin(φ) sin(θ) cos(φ)

− Syz sin(φ) sin2(θ)+ Syz cos2(θ) sin(φ)

+ Syy cos(θ) sin2(φ) sin(θ)− Szz cos(θ) sin(θ) = 0.

We could employ a similar solution procedure as in the
two-dimensional, linear fit, of solving for cos φ and cos θ ;
however, the solution is found using a steepest descent fol-
lowed by a Newton’s descent iterative algorithm [3]. Analytic

Fig. 4 Sample plot of objective function versus interface normal angles
φ and θ
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Fig. 5 Contour plot of objective function versus interface normal
angles φ and θ

expressions for the gradient are used. The starting value of θ

and φ are derived from the original gradient normal.

2.2.3 Linear smoothing performance

In practice, the linear smoothing produces second-order
accurate results in both two- and three-dimensions. When the
surface is curved, that is the stability points are significantly
displaced from a planar distribution, the results are noticeably
inaccurate. This inaccuracy can be caused by an unbalanced
distribution of neighboring stability points. If a home ele-
ment has one or two elements on one side with comparatively
long interfaces, and the opposite side has a greater number
of neighboring elements with smaller interface lengths, the
method inclines the interface to the side with the greater num-
ber of neighboring elements. In this case, the use of previ-
ously mentioned weighting factors minimizes the inaccuracy
but does not eliminate it. The smoothing method in the next
section will usually produce a more accurate result.

3 Spherical smoothing

In the development of these algorithms, it was recognized that
linear smoothing was not robust enough to produce second-
order accurate interfaces for nonplanar interfaces. A spher-
ical smoothing procedure was developed that fits a sphere
to a neighborhood of mixed elements’ stability points. This
method produces a more accurate interface orientation for a
wider set of interfaces.

3.1 Circular smoothing in two-dimensions

Several algorithms for smoothing were examined in the
development of the current algorithm. It was found that algo-
rithms that used more than the stability points, such as the
neighboring interface normals, were slow to converge to an
accurate result. This is due to oscillations in the neighbor-
ing normals. When the current method was developed, the
smoothing rapidly converged to an accurate result.

Consider a home element and a set of neighboring ele-
ments as illustrated in Fig. 6. The stability points are placed
close to the perimeter of the input circle. The circular smooth-
ing algorithm seeks to compute the center of curvature for
the neighborhood around the home element solely using the
positions of the stability points. To compute the location of
the local center of curvature for the home element, we con-
struct a chord between the home element’s stability point
and each neighboring stability point. A plane perpendicular
to each chord is constructed at the midpoint of each chord.
This construction is shown in Fig. 7. A least squares fit is
again constructed to these planes, and the point that mini-
mizes the sum of the distances from each midchord plane is
found.

For each of the neighboring stability points, a chord is
formed that extends from the home stability point to the
neighboring stability point. This direction will be used as
the midchord plane’s normal:

ĉi = Si −H
|Si −H| = {cxi , cyi }.

The position of the plane in space is given by:

pi = ĉi · 1

2
(Si +H) .

Let V be the unknown position of the center of convergence.
The objective function for the least squares fitting will be
the sum of the squares of distances of V from the mid-chord

Fig. 6 Illustration of gradient normal based interfaces for a circular
body
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A smoothed two- and three-dimensional interface reconstruction method 371

Fig. 7 Illustration of construction of center of curvature for circular
smoothing

planes. The objective function can be written as:

Obj =
ngbrs∑

i=1

(
ĉi · V− pi

)2

= V 2
x

ngbrs∑

i=1

(cxi )
2 + 2Vx Vy

ngbrs∑

i=1

(cxi cyi )

− 2Vx

ngbrs∑

i=1

(pi cxi )+ V 2
y

ngbrs∑

i=1

(cyi )
2

− 2Vy

ngbrs∑

i=1

(pi cyi )+
ngbrs∑

i=1

(pi )
2.

To find the values of Vx and Vy that minimize the objective
function, we differentiate the objective function with respect
to Vx and Vy :

∂Obj

∂Vx
= 0 = Vx

ngbrs∑

i=1

(cxi )
2 + Vy

ngbrs∑

i=1

(cxi cyi )

−
ngbrs∑

i=1

(pi cxi ),

∂Obj

∂Vy
= 0 = Vx

ngbrs∑

i=1

(cxi cyi )− Vy

ngbrs∑

i=1

(cyi )
2

−
ngbrs∑

i=1

(pi cyi ).

Solving for Vx and Vy gives us:

Vx = 1

D

(
CxpCyy − CypCxy

)
, (5)

Vy = 1

D

(
CypCxx − CxpCxy

)
,

where:

Cxx =
ngbrs∑

i=1

(cxi )
2, Cyy =

ngbrs∑

i=1

(cyi )
2, (6)

Cxy =
ngbrs∑

i=1

cxi Cyi , Cxp =
ngbrs∑

i=1

(cxi pi ),

Cyp =
ngbrs∑

i=1

(cyi pi ), D = Cxx Cyy − C2
xy .

In Fig. 7 the results of this fit are shown at the convergence
of the radial chord planes by a blue circle.

The new interface normal is constructed by passing a unit
vector originating at the center of convergence through the
home interface’s stability point:

n̂ = H− V
|H− V| . (7)

As in the previous linear fit, the orientation of the new normal
is determined by examining its vector dot product with the
volume fraction gradient normal. If the dot product results in
a positive value, the orientation of the fit normal is retained.
If the dot product results in a negative value, the orientation
of the fit normal is reversed.

3.2 Spherical smoothing in three-dimensions

Derivation of the spherical smoothing expressions for three
spatial dimensions proceeds in a similar manner as the two-
dimensional derivation. The chords are constructed in the
same manner and the objective function is:

Obj =
ngbrs∑

i=1

(
ĉi · V− pi

)2

=
ngbrs∑

i=1

(p2
i − 2cxi Vx pi + c2

xi
V 2

x − 2cyi Vy pi

+ 2cxi cyi Vx Vy + c2
yi

V 2
y − 2czi Vz pi

+ 2cxi czi Vx Vz + 2cyi czi Vy Vz + c2
zi

V 2
z ).

123



372 S. Mosso et al.

The objective function is differentiated with respect to the
three components of the position of the center of conver-
gence. Each of these equations is set equal to zero and the
coordinates of the center are solved for:

Cxx Vx + Cxy Vy + Cxz Vz − Cxp = 0

Cxy Vx + Cyy Vy + Cyz Vz − Cyp = 0

Cxz Vx + Cyz Vy + Czz Vz − Czp = 0

where:

Cxx =
ngbrs∑

i=1

c2
xi

, Cyy =
ngbrs∑

i=1

c2
yi
,

Czz =
ngbrs∑

i=1

c2
zi
, Cxy =

ngbrs∑

i=1

cxi Cyi ,

Cxz =
ngbrs∑

i=1

cxi Czi , Cyz =
ngbrs∑

i=1

cyi Czi ,

Cxp =
ngbrs∑

i=1

cxi pi , Cyp =
ngbrs∑

i=1

cyi pi ,

Czp =
ngbrs∑

i=1

czi pi .

Solving this set of simultaneous equations gives:

Vx = 1

D
(CxpCxzCyy + CxzCypCyz − CxpC2

yz

−CxzCyyCzp + CxpCyyCzz

−Cxy(CxzCyp − CyzCzp + CypCzz)),

Vy = 1

D
(CxyCxzCzp − CxpCxy(Cxz + Czz)

+Cxx (CxzCyp − CyzCzp + CypCzz)),

Vz = 1

D
(CxpCxyCyz − Cxx CypCyz − C2

xyCzp

+Cxx CyyCzp)

where

D = CxyCxzCyz − C2
xy(Cxz + Czz)

+Cxx (CxzCyy − C2
yz + CyyCzz).

4 Neighboring element selection for smoothing

For most interface shapes, the entire set of mixed elements
that share a node with the home element can be included in
the smoothing operations. A number of configurations can
degrade the accuracy of the smoothing operation. Filters are
used during the neighbor list formation to eliminate or reduce

the effect of using problematic neighbors. Each of these filters
will be discussed in two-dimensions only due to the relative
ease of presentation.

4.1 Spherical smoothing caution

When the interface is oriented nearly parallel to a home ele-
ment’s edge and is nearly coincident with that edge, a poten-
tial problem arises. If the neighbor that has the edge or face
in common with the home element is mixed, slight inac-
curacies in the gradient normal can produce large errors in
the position of the center of convergence. This problem is
illustrated in Fig. 8. The home element is element 163. The
interfaces in the illustration were computed using the gradi-
ent normal. The interface is nearly tangential to the common
edge between elements 163 and 133. Similarly the stabil-
ity points are oriented almost radially. The midchord line is
seen extending to the right of the figure. Least squares fit-
ting algorithms work best when the magnitude of the fitting
errors are similar in magnitude. In this case, the orthogonal
distance of element 133’s midchord plane will dominate the
fitting procedure and render the result grossly erroneous if it
is allowed to participate in the fit. The algorithm can recog-
nize this potential problem by comparing each neighbors’
stability point displacement from the home element’s stabil-
ity point with the tangential distance to the home element’s
interface dimension. Only elements whose stability points
are not radially located with respect to the home element
are eliminated from the smoothing. The neighbor rejection

Fig. 8 Illustration of circular smoothing caution
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A smoothed two- and three-dimensional interface reconstruction method 373

algorithm is

Ci = Si −H, (8)

Cdisp =
∣
∣Ci − (Ci · n̂grad)n̂grad

∣
∣

i f (Cdisp <
1

2
Lhome)→ reject

where Lhome is the home interface length in two-dimensions
and a characteristic diameter derived from the area of
the home element’s interface is used in three-dimensions,

Lhome =
√

A
π

. The term n̂grad is the gradient normal for the
home element.

4.2 Opposite sides of thin layers

When a material is thin compared to the mesh size, most
reconstruction methods will have problems. (An alternate
method of avoiding this trouble, the “onion skin” model,
will be mentioned in a later section). Thin in this context
means that the opposite side of the material boundary is
contained within the home element’s computational neigh-
borhood. This is illustrated in Fig. 9. The actual material
configuration is shown as the blue shaded region and the inter-
faces that result from the initial volume fraction gradient nor-
mal are shown as red line segments. Notice that the elements
near the right side of the mesh poorly represent the body;
while, elements farther to left side of the mesh represent a
typical gradient normal error. Elements 102 and 53 are signif-
icantly affected by the gradient stencil enclosing both sides of

the body. The most extreme gradient normal errors occur in
element 179. This element contains both sides of the body.
There is not a single segment interface that can accurately
represent the interface in this element. It is apparent that ele-
ment 102 should not utilize elements 14, 53, or 124 in its
smoothing stencil because the interfaces in these elements
lie on the opposite side of the body. The interfaces in these
elements don’t represent useful smoothing information for
the top side of the body. To determine which elements to
exclude from the smoothing stencil, the algorithm compares
the vector dot product of the home element’s gradient nor-
mal and each neighboring mixed element’s gradient normal
with a threshold. The threshold is a user selectable quantity;
however, the default value is the cosine of 45 degrees. To
illustrate, element 102 would utilize neighboring elements
76, 130, 131, and 226 for the linear smoothing. Element 53
would exclude elements 130, 226, 102, 76, and 179 from
its linear smoothing. The results of the linear smoothing are
shown in Fig. 10.

4.3 Interface fragmentation

A problem for all interface reconstruction algorithms is
under-resolved corners of high curvature interfaces. The
reconstructed interfaces for these surfaces tends to emit iso-
lated fragments. While the gradient normal is relatively insen-
sitive to these fragments the smoothing operations can
be very sensitive to fragments because the fragments are

Fig. 9 Unsmoothed gradient
normal illustration of thin layer
caution

Fig. 10 Smoothed normal
illustration of thin layer caution
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possibly included in the smoothing operation. The amount of
fragmentation is increased by alternating direction advection
algorithms. The key to minimizing the influence of fragments
is to include a fragment recognition algorithm. After being
tagged as a fragment neighboring elements would not use
the fragment in their smoothing operations. Fragments are
flagged when: none of its neighbors has a volume fraction of
one for this material, none of the mixed neighbors contains
a volume fraction of the material greater than a threshold
(usually a quarter), and there are few neighboring elements
that contain this material (usually four; however, this depends
upon the element connectivity in each problem).

4.4 Degenerate three-dimensional planar smoothing

To avoid degenerate solutions in the planar smoothing, the
derivatives of the objective function with respect to the two
angles are examined at the minima. If the values of the two
angles can be varied and the objective function is still at its
minima the solution is flagged as degenerate. Degeneracy
occurs when there are enough suitable neighboring elements
to attempt a planar smoothing; however, the points are col-
inear. This usually occurs when an interface is at a problem
boundary. A plot of the objective function for a degenerate
solution is shown in Figs. 11 and 12.

5 Choice of smoothed normal method

There are three interface normals that have been discussed,
a volume fraction gradient normal, a planar smoothing nor-
mal, and a spherical smoothing normal. A quality metric is
used to determine which normal will be employed. The qual-
ity measure compares interface position and orientation in
neighboring mixed elements with the extrapolated values.

Fig. 11 Plot of objective function for a colinearly degenerate planar fit

Fig. 12 Contour plot of objective function for a colinearly degenerate
planar fit

5.1 Planar smoothing quality measure

A two-dimensional diagram of the planar smoothing quality
measure is shown in Fig. 13. The purpose of the quality mea-
sure is to develop a quantity that reflects the agreement of the
home element’s extrapolated interface with the neighboring
elements’ interfaces. The units of the measure is volume in
three-dimensions and area in two-dimensions. The volume of
any discrepancy between the extrapolated and actual neigh-
boring interface has two components. The first component
is a displacement difference, or how far is the neighboring

Fig. 13 Planar smoothing quality measure. The blue, dashed inter-
face is the extrapolation of the home element’s interface using the planar
smoothed normal. The redvectors are the neighboring elements’ inter-
face normals. The blacksegments are the displacements between the
extrapolated interface and the neighboring elements’ stability points
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stability point away from the extrapolated interface. The
value of the displacement quality is

Qdisp = Arean Dn,

in three-dimensions where Arean is the area of the neighbor-
ing element’s interface and Dn is the extrapolated displace-
ment which is given by:

ĥlinear · Sn − p = 0

where ĥlinear is the planar fit normal in the home element and
the neighboring element’s stability point position is Sn . For
the two-dimensional expression, the length of the interface
is used instead of the area.

The second component of the quality assesses the rela-
tive alignment of the neighboring element’s normal and the
extrapolated normal. If the angle between the two normals is
θ the two-dimensional quality contribution is

Qalign = 1

2
L2

n |sin θ | ,
where Ln is the length of the interface in each neighbor. The
three-dimensional quality contribution is

Qalign = 2An

π
|sin θ | ,

where An is the area of the interface. The magnitude of the
sine of the angle between the two normals is computed using
the dot product of the two normals:

sin θ =
√

1− (n̂ext · n̂n)2.

The extrapolated normal, for the planar quality, is the same
as the home interface’s planar fit normal, ĥlinear because the
planar normal is constant along the plane. The neighboring
elements’ interface normal is n̂n . The total quality is the sum
of the two components:

Qlinear =
ngbrs∑

i=1

(Qdisp + Qalign). (9)

5.2 Spherical smoothing quality measure

The spherical smoothing quality measure is illustrated in
Fig. 14. It is computed using the same expressions as the
planar smoothing except for two differences. First, the extra-
polated neighbor normal is computed by passing a vector
from the home element’s center of convergence through the
neighbor’s stability point. The resulting vector is normalized
to produce a unit vector:

n̂ext = Sn − Vhome

|Sn − Vhome| .
The second difference is the method of calculating the neigh-
bor’s displacement from the extrapolated interface. The dis-
tance is the magnitude of the difference between the home

Fig. 14 Spherical smoothing quality measure. The blue, dashed,
circular interface is the extrapolation of the home element’s fitted inter-
face using the home element’s center of convergence. The redvectors
are the neighboring elements’ interface normals. The bluevectors are
the neighboring elements’ extrapolated, spherically smoothed normals

element’s stability point distance from the center of conver-
gence and the neighboring element’s stability point distance:

Dn = |Rhome − Rn| ,
where

Rhome = |H− Vhome| ,

Rn = |Sn − Vhome| .
This results in the two-dimensional spherical quality mea-
sure:

QC S =
ngbrs∑

i=1

(
Ln |Rn − Rhome| (10)

+ 1

2
L2

n

√
1− (n̂ext · n̂n)2

)
.

6 Algorithm outlines

Two additional parameters are included in the smoothing
iterations. Both of these have default values that the user
can modify through input. A small number, c, defaulted to
10−7 is used as a volume fraction cutoff. The purpose of this
threshold is to exclude small volume fractions or volume
fractions of very nearly 1. Elements with volume fractions
below the threshold and nearly full are excluded from consid-
eration because these usually result from machine roundoff
and provide a marginal amount of information to the smooth-
ing. The other parameter is r . The floating point numbers in
this paper were implemented as double precision numbers
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utilizing 64 bits of machine precision. A value of r = 10−12

is used to avoid divisions by zero.

6.1 Two-dimensional planar smoothing algorithm

LinearSmooth (Mesh, home, Interfaces, Vf, VfSum,
Fragment, nL S , QL S)

Input: Mesh - the description of elements
and nodes

home - the home element index
Interfaces - the current interface descriptions

for this material
Vf - volume fractions for

current material
VfSum - sum of volume fractions for

current and previous materials
Fragment - flag indicating if material in an

element is a fragment
Output: nL S - the new linear smoothed normal

for home element
QL S - the linear smoothed quality

for home element

vector Ngbrs←Mesh fetch list of elements
sharing a node with home

vector SmoothingNgbrs.clear()

for (ngbr of Ngbrs) {
if (c < Vf[ngbr] < 1-c &&

VfSum[ngbr] < 1-c && !Fragment[ngbr]) {
DotProduct← Interfaces.Normal[home] ◦

Interfaces.Normal[ngbr]
if (DotProduct > DotProductThreshold)

SmoothingNgbrs.push(ngbr)
}

}
for (ngbr of SmoothingNgbrs)

Evaluate Sxx, Syy, Sxy, D, and t [eqns 3]

if (abs(t) ≥ r ) {
Evaluate n̂1, n̂2, n̂3, and n̂4 [eqns 4]
Evaluate Obj(n̂1), Obj(n̂2), [eqn 2]

Obj(n̂3), and Obj(n̂4)
n̂L S ← n̂ of min(Obj(n̂1), Obj(n̂2),

Obj(n̂3), Obj(n̂4))
if (n̂L S ◦ I nter f aces.Normal[home] < 0)

n̂L S = −n̂L S

Evaluate QL S [eqn 9]
}
else

QL S = Large

6.2 Two-dimensional spherical smoothing algorithm

CircularSmooth (Mesh, home, Interfaces, Vf, VfSum,
Fragment, nC S , QC S)

Input: Mesh - the description of elements
and nodes

home - the home element index
Interfaces - the current interface descriptions

for this material
Vf - volume fractions for

current material
VfSum - sum of volume fractions for

current and previous materials
Fragment - flag indicating if material in an

element is a fragment
Output: nC S - the new circular smoothed normal

for home element
QC S - the circular smoothed quality

for home element

vector Ngbrs←Mesh fetch list of elements
sharing a node with home

vector SmoothingNgbrs.clear()

for (ngbr of Ngbrs) {
if (c < Vf[ngbr] < 1-c &&

VfSum[ngbr] < 1-c && !Fragment[ngbr]) {
DotProduct← Interfaces.Normal[home] ◦

Interfaces.Normal[ngbr]
Evaluate Cdisp [eqns 8]
if (DotProduct > DotProductThreshold &&

Cdisp
1
2 Lhome)

SmoothingNgbrs.push(ngbr)
}

}
for (ngbr of SmoothingNgbrs) {

Evaluate ChordLength between ngbr and home
Evaluate MaxChord = max of ChordLength
Evaluate Cxx, Cyy, Cxy, Cxp, Cyp, and D [eqns 6]

}

if (abs(D) > r ) {
Evaluate V [eqns 5]

R =
√

V 2
x + V 2

y

if (R ≤ 1000*MaxChord) {
Evaluate n̂C S [eqn 7]
if (n̂C S ◦ I nter f aces.Normal[home] ≤ 0)

n̂C S = −n̂C S

Evaluate QC S [eqn 10]
}
else

QC S = Large
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}
else {

QC S = Large
}

6.3 Iteration outline

Using the volume fraction gradient normal as the initial inter-
face normal, a material’s interfaces are positioned in each
mixed element containing the material and the stability points
are calculated. For the first iteration, only the planar smooth-
ing is employed because the gradient normal is quite noisy
for unstructured grids. After the interfaces have been reposi-
tioned and new stability points are calculated, both the pla-
nar and spherical smoothings are performed and the quality
measure is calculated for each. The smoothing method that
produces the best quality (lowest magnitude) for a mixed
element is used for the following iterations for this mater-
ial in this mixed element. The quality of the initial iteration
usually is predictive of the quality that would be produced
in later iterations; however, by eliminating the less accu-
rate smoothing, significant computational expense is saved.
After each iteration, the interface is repositioned in the mixed
elements and the stability point location is updated. Each
mixed element will use its smoothing method to improve
its normal until either the change in the previous iteration’s
normal and the current normal is minimal or a maximum
number of iterations has been reached. The iteration max-
imum is usually reached only when there is a significant
discontinuity in the neighboring interfaces, such as if the
home element is the central element for a corner. The max-
imum number of iterations is ten and the successive normal
convergence occurs when the dot product of the previous
normal and the current normal is greater than 1 minus an
epsilon:

ĥ
prev · ĥcurr

> 1− 10−10.

In the first demonstration of the following section, no test of
the 180 orientations took more than the minimum number of
three iterations.

MaterialReconstruction (Mesh, Vf, VfSum, Fragment,
Interfaces)

Input: Mesh - the description of elements
and nodes

Vf - volume fractions for
current material

VfSum - sum of volume fractions for
current and previous materials

Fragment - flag indicating if material in an
element is a fragment

Output: Interfaces - the current interface descriptions
for this material

for (mixed elements of Mesh) {
Evaluate n̂grad [eqn 1]
Interfaces.Normal[element]← n̂grad

Position interface to match element material volume
Interfaces.Position[element]← position
Interfaces.StabilityPt[element]← midPoint

}

for (mixed elements of Mesh) {
LinearSmooth(Mesh, element, Interfaces, Vf,

VfSum, Fragment, nL S , QL S)
if (QL S < Large) {

Interfaces.Normal[home]← nL S

Position interface to match element mat volume
Interfaces.Position[element]← position
Interfaces.StabilityPt[element]← midPoint

}
}
vector SmoothingMethod← Linear
for (mixed elements of Mesh) {

LinearSmooth(Mesh, element, Interfaces, Vf,
VfSum, Fragment, nL S , QL S)

CircularSmooth(Mesh, element, Interfaces, Vf,
VfSum, Fragment, nC S , QC S)

if (QL S < QC S) {
SmoothingMethod[element]← Linear
Interfaces.Normal[home]← nL S

}
else if (QC S < Large) {

SmoothingMethod[element]← Circular
Interfaces.Normal[home]← nC S

}
Position interface to match element mat volume
Interfaces.Position[element]← position
Interfaces.StabilityPt[element]← midPoint

}

vector Converged← True
for (iteration 3–10)

for (mixed elements of Mesh) {
PreviousNrml← Interfaces.Normal[element]
if (SmoothingMethod[element] = Linear) {

LinearSmooth(Mesh, element, Interfaces, Vf,
VfSum, Fragment, nL S , QL S)

Interfaces.Normal[home]← nL S

}
else if (SmoothingMethod[element] = Circular) {

CircularSmooth(Mesh, element, Interfaces, Vf,
VfSum, Fragment, nC S , QC S)

Interfaces.Normal[home]← nC S

}
Position interface to match element mat volume
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Interfaces.Position[element]← position
Interfaces.StabilityPt[element]← midPoint
if (PreviousNrml ◦ Interfaces.Normal[element] <

1− ε)
Converged[element]← False

}
if (All(Converged)) break

7 Two-dimensional planar test

To demonstrate the method, an unstructured grid of trian-
gular elements is constructed and the volume fractions for
two materials separated by a planar interface are constructed
analytically. The orientation of the interface was varied incre-
mentally for 180 test cases. The interface was pivoted about
the center of the mesh. The results shown in Fig. 15 are rep-
resentative of the entire range of angles. The error for the
test is defined as the area between the analytic interface and
the PIR interface. The sum of the error over the mesh is
2.04651× 10−12 and is representative of the entire range of
orientations. The area of the mesh is one. The error is due to
machine roundoff and convergence bounds and can be con-
sidered zero. The maximum error in any mixed element in
the mesh is 4.30989× 10−13.

There were no explicit boundary conditions used or needed
by this model. Interface reconstruction boundary conditions
used by many codes involve a layer of ghost elements around
the mesh. This is inaccurate because the volume fractions in

Fig. 15 Two-dimensional planar test on an unstructured grid with tri-
angular elements

the ghost layer are somewhat difficult to robustly specify.
The layer of ghost elements are usually described as a reflec-
tion of the physical elements along the mesh boundary. The
material volume fractions are copied from the physical layer
to the ghost layer. This leads to interface orientations that are
nearly perpendicular to the problem boundary. For the test
case shown the interfaces are continuous and did not require
any special treatment to achieve this continuity. This is an
advantage in accuracy, algorithm simplicity, and computa-
tional expense.

8 Three-dimensional slab test

The three-dimensional, planar smoothing is demonstrated for
a slab inclined with respect to the Cartesian mesh. The results
shown in Figs. 16 and 17 are representative of the entire
range of angles. The error for the test is defined as the vol-
ume between the analytic interface and the PIR interface.

Fig. 16 Three-dimensional planar smoothing test on a structured grid
with hexahedral elements

Fig. 17 Three-dimensional planar smoothing test on a structured grid
with hexahedral elements
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The sum of the error over the mesh is 5.736368 × 10−10

and is representative of the entire range of orientations. The
volume of the mesh is one. The error is due to machine
roundoff and iteration convergence bounds and can be con-
sidered zero. The maximum error in any mixed element in
the mesh is 1.04547 × 10−10. The three-dimensional mesh
displays the same boundary accuracy as the previous two-
dimensional demonstration. In Fig. 17 the interface polygons
for the mesh are displayed. The polygonal edges are very
continuous between neighboring elements. In three spatial
dimensions this continuity is a very good visual indication
that the interfaces are continuous.

9 Three material, two-dimensional, planar test
with triangular elements

For this demonstration three materials with planar interfaces
that are arranged in an intersecting pattern are tested. In this
problem the interface for the red material is calculated first.
For the purposes of positioning the blue and green materi-
als within mixed elements containing red material, the red
material interface is used to cut off its portion of the mixed
elements. Accurate placement of the blue and green materials
is simplified by removing this portion of the mixed element.
When the gradient normal for the green material is computed
rather than using the green material’s volume fraction alone,
the sum of the red and green materials’ volume fractions is
used to compute the gradient normal. By summing the vol-

Fig. 18 Mesh for two-dimensional, three material planar smoothing
test of intersecting materials on an unstructured grid with triangular
elements

ume fractions the interfaces are built on top of each other
in multiple material elements. Youngs’ refers to this as the
“onion skin” model [9]. The “onion skin” interface normal
treatment has advantages for the gradient normal; however,
it produces problems if the interface is positioned within the
element based upon the sum of the volume fractions. The
PIR algorithm avoids the positioning problem by removing
previous materials from the element’s polygonal description
for positioning purposes. The interface at the junction of the
three materials retains its planar nature.

10 Three material, three-dimensional, planar test
in a Cartesian grid

As in the previous two-dimensional test a three material
arrangement of materials is placed in a mesh. The mesh for
this test is a Cartesian mesh of hexahedral elements. The
reconstructed interfaces are shown in Fig. 19 and the inter-
face polygons are shown in Fig. 20. The interfaces have been
transported through the mesh using the reconstructed inter-
faces and the reconstructed interfaces have remained planar
and the junction has remained sharp through the translation.

Fig. 19 Mesh for three-dimensional, three material planar smoothing
test of intersecting materials on a structured grid with hexahedral
elements

Fig. 20 Interface polygons of three-dimensional, three material pla-
nar smoothing test of intersecting materials on a structured grid with
hexahedral elements
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11 Two-dimensional spherical smoothing test
on unstructured grid

The volume fractions for a circle were constructed in four
successively refined unstructured meshes to assess the per-
formance of the spherical smoothing. In Fig. 21 the results of
the PIR for the three coarser meshes of varying refinement
are shown. Several error measures are possible; however,
none are useful in calculating an order of convergence for
the method. A possible error measure is the area between
the input circle and the reconstructed piecewise linear inter-
face. The results of this error measure for the five meshes are
presented in Table 1. The mesh resolution, ∆, is computed
as:

∆ = √
1/n,

where n is the number of elements in each mesh. A least-
squares fit of the error for the respective mesh dimensions
yields an accuracy order of 1.98.

12 Three-dimensional spherical smoothing test
on a Cartesian grid

A spherically shaped material was placed in a three-
dimensional Cartesian grid. The problem was run on a coarse
and a fine mesh. The interface plot of the reconstructed inter-
faces on a coarse mesh are shown in Fig. 22 and the interface
plot of the finer mesh run is shown in Fig. 23. The interfaces
were used to translate the material through the mesh with

Table 1 Comparison of the area error for a circle centered at { 1
2 , 1

2 }
with a radius of 0.3 for various mesh resolutions

n ∆ PIR area error

228 0.066 9.62238× 10−4

838 0.0345 3.23664× 10−4

3,278 0.0175 7.44814× 10−5

13,306 0.00867 1.71750× 10−5

52,994 0.00435 7.52342× 10−6

Fig. 22 Interface polygons of three-dimensional spherical smoothing
test of sphere in a coarse, structured grid with hexahedral elements

both resolutions. The continuity of the interfaces was very
good for both the coarse and fine meshes and this continuity
was maintained as the body was moved through the mesh. A
mesh convergence study for the three-dimensional problem
is not presented because an intersection calculation, similar
to the method used in two-dimensions, is not yet available in
three dimensions.

13 Two-dimensional oval test of spherical smoothing

The PIR algorithm can be shown to perform well on a curved
two-dimensional shape that is not a circle. To address this
question volume fractions for a Cassini Oval [7] are com-
puted for two unstructured meshes. The reconstructed inter-
faces are shown as red line segments and the input profile of
the Cassini Oval is shown as the blue curve in Fig. 24. The
agreement is excellent. The blue, analytic interface is barely
visible under the reconstructed interfaces. The error is the
area between the Cassini oval and the piecewise linear inter-
face and is tabulated for five succesively refined meshes in
Table 2. The least squares fit of the error and mesh dimension
gives an order of accuracy of 2.01.

Fig. 21 Interface polygons of
two-dimensional spherical
smoothing test of sphere in
three, unstructured grids with
triangular elements
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Fig. 23 Interface polygons of three-dimensional spherical smoothing
test of sphere in a fine, structured grid with hexahedral elements

Fig. 24 Interface polygons for two-dimensional spherical smooth-
ing test of Cassini Oval in a coarse unstructured grid with triangular
elements

Table 2 Comparison of the area error for a Cassini Oval at { 1
2 , 1

2 } for
various mesh resolutions

n ∆ PIR area error

228 0.066 9.55529× 10−4

838 0.0345 3.20342× 10−4

3,278 0.0175 7.46090× 10−5

13,306 0.00867 1.60791× 10−5

52,994 0.00435 4.47963× 10−6

14 Conclusion

A second-order accurate, interface reconstruction algorithm
has been presented. The method can be used to reconstruct
piecewice linear interfaces in structured and unstructured,
two- and three-dimensional meshes. The algorithm is more
computationally expensive than other gradient normal based,
non-iterative reconstruction techniques; however, the added
expense results in higher spatial accuracy.
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